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Asymptotic distributions of periodically driven stochastic systems
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We study the large-time behavior of Brownian particles moving through a viscous medium in a confined
potential, and which are further subjected to position-dependent driving forces that are periodic in time. We
focus on the case where these driving forces are rapidly oscillating with an amplitude that is not necessarily
small. We develop a perturbative method for the high-frequency regime to find the large-time behavior of
periodically driven stochastic systems. The asymptotic distribution of Brownian particles is then determined to
second order. To first order, these particles are found to execute small-amplitude oscillations around an effec-
tive static potential that can have interesting forms.
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I. INTRODUCTION

When a macroscopic system characterized by a Ha
tonianH(C) is in contact with an environment with temper
ture b21, at long enough times it reaches an equilibriu
state and is described by the Boltzmann-Gibbs distribu
Peq(C);exp@2bH(C)# over the configurations of the sys
tem. If, however, the system is subjected to time-depend
forces of appreciable magnitude, there is no analogous
eral statement that can be made about the distribu
P(C,t) at large times. A case of particular interest aris
when these forces vary periodically in time. While it
straightforward to see that the large-time distribution must
periodic as well, its full form is not known in general. It
thus of interest to seek explicit answers for particular phy
cal systems subjected to periodic driving.

In this paper, we focus on a paradigmatic system
Brownian particle which feels viscous forces and rand
impulses from the surrounding medium, and is confined b
potential well. We ask: What is the effect of a further osc
lating potential on the state of the particle? We are prima
interested in the case where the fluctuating potential ha
nontrivial spatial dependence. We analyze the prob
mostly in the high-frequency limit and find the asympto
state perturbatively. The resulting time-averaged asympt
state is described effectively by a distribution of the Bol
mann form with an energy function that has three parts
kinetic energy term that depends only on velocity; an eff
tive potential that depends only on position coordinates;
a term with both velocity and position coordinates. Howev
to the leading order the result is particularly simple, a
involves only the kinetic term and an effective frequenc
dependent potential energy whose form can be specified
actly.

The effects of rapidly oscillating periodic forces on pure
mechanical systems were demonstrated many years ago
driven pendulum@1# and were also studied for more gene
cases@2#. Periodically driven stochastic systems too ha
been studied extensively over the past two decades in
context of stochastic resonance~see, e.g., Ref.@3#, and ref-
erences therein!. However, most of these studies were r
stricted to weak periodic driving with position-independe
forces@4–7#, often only in the overdamped regime. Furth
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it has sometimes been assumed that the driving frequenc
larger than all typical frequencies, including that which
associated with the noise@5#. Our treatment generalizes tha
of Refs.@4# and@5# in the high-frequency regime, by allow
ing for arbitrary damping; by including position dependen
of the driving force; and by taking frequencies to be high
than those set by the confining potential, yet not necessa
higher than those set by the noise.

Some applications of our results are possible. For
stance, depending on the spatial variation of the fluctua
forces, the effective potential may have more than one lo
minimum even if the original potential has only one. Und
such circumstances, an assembly of Brownian partic
would tend to segregate in two separate collections. Mo
over, the fact that the effective potential depends on phys
properties, such as the mass of the particles, can be expl
to promote segregation of two sets of Brownian particles t
differ from each other in mass or some other physical
tribute.

The layout of the paper is as follows. In the followin
section, we define the problem and discuss the different t
scales involved and their interplay, and discuss various
gimes qualitatively. In Sec. III, we develop the necess
formalism required to address rapid periodic drive and arr
at a perturbative scheme. In Sec. IV, we use this schem
determine the asymptotic distribution. In Sec. V, we brie
discuss the effect of slow periodic driving so as to comp
with that of rapid driving. Finally, in Sec. VI, we conclud
with a discussion of possible directions in which our resu
may be generalized, possible applications~particle segrega-
tion, particle sifting!, and an example~the simple pendulum!
that demonstrates the significance of the new effects fou

II. PERIODICALLY DRIVEN BROWNIAN PARTICLE

We shall consider a one-dimensional Brownian particle
a potential well, subjected to a periodic force along with
damping force and random noise. The equation of motion
the driven Brownian particle moving in a viscous enviro
ment is

mẍ52g ẋ2
]

]x
U~x!1F~x,t !1h~ t !, ~1!
©2003 The American Physical Society11-1
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wherem is the mass,g is the coefficient of viscosity,U(x) is
a static confining potential,F(x,t) is the periodic driving
force with a periodT, F(x,t)5F(x,t1T), and h(t) is a
Gaussian random noise witĥh(t)&h50 and ^h(t)h(t8)&h
52gb21d(t2t8), whereb21 is the temperature of the su
rounding heat bath.

The probability distribution of the Brownian particle
defined as P(x,v,t)5^d„x2xh(t)…d„v2 ẋh(t)…&h , where
xh(t) andẋh(t) are the position and the velocity at timet for
a particular history of$h(t)% over a timet. The time evolu-
tion of P(x,v,t) is described by the following Fokker-Planc
~FP! equation~also referred to as the Kramers equation!,

]P

]t
52

]

]x
~vP!2

]

]v F 1

m H 2gv2
]

]x
U~x!1F~x,t !J PG

1
g

bm2

]2P

]v2
. ~2!

The driving forceF(x,t) that is oscillating with a frequency
v52p/T is chosen to be

F~x,t !5 f ~x!cos~vt !1g~x!sin~vt ! ~3!

in the domainL1,x,L2 , where the amplitude function
f (x) andg(x) vanish at the boundaries,x5L1 andL2 , and
outside the domain. This choice ofF(x,t) is made for con-
venience; choosing a more general periodic function will
hinder our analysis. The generalization to higher dimensi
and to many interacting particles is also straightforward. O
aim is to find the large-time distribution that we denote
P`(x,v,t)5 lim

t→`
P(x,v,t).

In the absence of a driving force, all solutionsP(x,v,t) of
the FP equation, corresponding to various arbitrary ini
distributions, tend to a unique distribution after a lo
enough time@8#. This distributionP`(x,v,t) for the Brown-
ian particles takes the equilibrium canonical formPeq(x,v)

5(1/Z0)exp$2b@ 1
2mv21U(x)#%. When a periodic driving

force is present,P`(x,v,t) approaches a periodic function o
time which is unique up to a phase@9,3#. In brief, the argu-
ment for the periodicity goes as follows. When the FP ope
tor is periodic,L(t)5L(t1T), the solution to the FP equa
tion @] t2L(t)#P(x,v,t)50 can be expanded in terms of th
Floquet-type functionspm(x,v,t)exp(2mt). The functions
pm(x,v,t)5pm(x,v,t1T) are periodic and are the righ
eigenfunctions of] t2L(t) with eigenvaluesm. It is known
that for anN-dimensional FP equation, the real parts of the
eigenvalues Re(m) are positive semidefinite and hence in t
large-time limit, for typical confining potentials, onl
p0(x,v,t) survives. We are interested in finding this larg
time distribution P`(x,v,t) for a given F(x,t). Since no
analytic solution of the FP equation is known for an arbitra
time periodicF(x,t), even when it involves only the funda
mental frequency, we shall restrict our attention to cert
regimes of the driving frequency while solving fo
P`(x,v,t).

In the absence of the driving force there are two import
time scales in the system; one,tv5m/g, is introduced by the
06111
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viscous medium and the other,tw52p/v0 , is related typi-
cally to the curvature at the bottom of the potential we
v05AU9(xmin)/m. The velocity variable equilibriates in a
time scale set bytv and hence for larger times it gets d
scribed by a stationary distribution. Thus, in a highly visco
medium, wheretv!tw holds, after a timet@tv the distri-
bution can be written asP(x,v,t)5Peq(v)P(x,t), where
Peq(v);exp@2b1

2mv2# is the canonical distribution for ve
locity andP(x,t)5*dvP(x,v,t) is the marginal distribution
involving only position. This marginal distribution satisfie
an FP equation~often called the Smoluchowski equation!
obtained by dropping the inertial term in Eq.~1!, as this term
becomes insignificant in comparison with the viscous te
once the time exceedstv .

If, however, there is a driving force with a high enoug
frequency, then this reduction to the Smoluchowski lim
does not take place. The oscillating driving force introduc
one other important time scale associated with the tim
periodT whose existence restricts the domain of validity
the Smoluchowski equation even in the high-friction limit.
is useful to demarcate different regimes of the driving f
quency in this limit: (a)tv!tw,T and (b)tv,T!tw or T
,tv!tw . In case (a), the velocity decouples from the p
sition and one can still use the Smoluchowski equation
obtain the large-time distribution, while in case (b), the dr
ing force has a time scale comparable to that of the velo
relaxation time and hence it is necessary to retain the Kr
ers equation.

If the time scale of measurement exceeds the time pe
T, then the relevant quantity is the large-time distributi
averaged over a time period P`(x,v,t)
5(1/T)*0

TP`(x,v,t). Hence we shall also determin
P`(x,v,t).

III. RAPIDLY OSCILLATING FORCES: FORMALISM

In a mechanical system, in the absence of a viscous fo
and random noise, it is known that forv@v0 , the particle
executes small amplitude oscillations of frequencyv about a
smooth mean path@2#. This motion can be described b
separating it into slow and fast variables; the fast varia
decouples from the slow one while the slow variable see
static effective potential, modified due to the oscillations
the fast variable. In this section, we develop the necess
formalism that accommodates an analogy with this sep
tion into slow and fast variables and enables us to solve
problem when viscous and random forces are included.

A. Transformation of FP equation

In this subsection, we transform the FP equation unde
specific coordinate transformation which enables it to
solved perturbatively. For the perturbative treatment to
valid a sufficient condition, though not necessary, is thav
be large, while no assumption is made about the amplitud
the driving force in comparison with the static potential.

We make the coordinate transformation$x,v,t%
→$X,V,t% under which the distribution is made to beha
like a scalar function:P(x,v,t)→ P̃(X,V,t)5P(x,v,t). The
old and new coordinates are related as follows,
1-2
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x5X1j~X,t!, v5V1
]

]t
j~X,t!, t5t. ~4!

The explicit form ofj(X,t) will be specified later. Note tha
the volume element dxdv5dXdVJ(X,V,t), where
J(X,V,t)5(11]j/]X) and hence, ifP is the probability
density in (x,v) space, thenP̃J becomes the the probabilit
density in (X,V) space. Also, under the above coordina
transformation the derivatives transform as follows:

]

]x
5

1

11j8

]

]X
2

j̇8

11j8

]

]V
,

]

]v
5

]

]V
,

]

]t
5

]

]t
2

j̇

11j8

]

]X
1S j̇ j̇8

11j8
2 j̈ D ]

]V
, ~5!

where thedots and primeson j stand for derivatives with
respect tot andX, respectively. Making use of Eqs.~4! and
~5! in Eq. ~2!, we get

] P̃

]t
52

]

]X
~VP̃!2

]

]V F 1

m
$2gV1 f U~X1j!

1F~X1j,t!2F~X,t!%P̃G1
g

bm2

]2P̃

]V2

1VF j8

11j8

] P̃

]X
1

j̇8

11j8

] P̃

]VG
1

1

m
@mj̈1gj̇2F~X,t!#

] P̃

]V
, ~6!

where f U(X)52]U(X)/]X.
Now choosej(X,t) such that it is a solution of the fol

lowing equation,

mj̈52gj̇1F~X,t!. ~7!

For F(X,t) as given in Eq.~3!, the solution to the above
equation is

j~X,t!5
21

mS v21
g2

m2D F S f ~X!1
g

mv
g~X! D cos~vt!

1S g~X!2
g

mv
f ~X! D sin~vt!G . ~8!

Sincej is small for large values of (v21g2/m2), we may
expand Eq.~6! perturbatively inj. The reason for choosing
the above dynamics@Eq. ~7!# for j is that the last term in Eq
~6! becomes zero and further the explicitly~time!
06111
t-dependent term becomes small ifj is small, thus making
the equation amenable to perturbative analysis.

Note that when the driving force isx independent, Eq.~6!
reduces to the usual FP equation with the static forcef U(X)
being replaced byf U(X1j).

B. The perturbative scheme

We now find the large-time solution of Eq.~6! perturba-
tively in powers ofj. Upon substitutingj as given in Eq.
~8!, we see that Eq.~6! takes the form

]

]t
P̃~X,V,t!5@L1DL# P̃~X,V,t!

[ (
n50

`

@L (n)1DL (n)# P̃~X,V,t!, ~9!

where L and DL are static and time-dependent operato
respectively. The superscript on the operatorsL (n) and
DL (n) indicates that they are ofO(jn); the explicit forms of
the first few operators are

L (0)52V
]

]X
1

1

m

]

]V
@gV1U8~X!#1

g

bm2

]2

]V2
,

L (1)52
1

m
jF8~X,t!

]

]V
,

L (2)5
1

2m
j2U-~X!

]

]V
2Vj82

]

]X
,

DL (0)50,

DL (1)5
1

m
@jU9~X!2jF8~X,t!1jF8~X,t!#

]

]V

1Vj8
]

]X
1Vj̇8

]

]V
,

DL (2)5
1

2m
@~j22j2!U-~X!2j2F9~X,t!#

]

]V

2V~j822j82!
]

]X
2Vj̇8j8

]

]V
, ~10!

where thebar over the terms indicates an average ove
time period. The perturbative asymptotic solution of Eq.~9!
can be formally written as follows:

P̃`~X,V,t!5Q`~X,V,t!1
1

]t2LDLP̃`~X,V,t!,

~11!

whereQ`(X,V,t) is the right eigenfunction ofL with eigen-
value zero. Since the asymptotic distribution is periodic a
the nonzero eigenvalues ofL have a nonvanishing real par
it follows from Eq. ~9! that DLP̃` has no overlap with the
eigenfunction of]t2L with zero eigenvalue. Hence the op
1-3
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eration of the inverse of]t2L is well defined as it acts only
on the space of functions orthogonal to that eigenfunctio

It is not possible to obtain an explicit form for the inver
of ]t2L for arbitraryU(X) andF(X,t), in which case nu-
merical or variational methods might be adopted to de
mine the eigenfunctions and eigenvalues ofL or L0 and to
obtain (]t2L)21. If for some form of the potentialU(X),
we are able to find all the eigenfunctions of, say,L0 then this
inverse can be conveniently expanded to any order inj as
follows

1

]t2L 5 (
n50

` F 1

]t2L0
~L2L0!Gn 1

]t2L0
. ~12!

But a more suitable series expansion can be given for
operator when eitherv or g/m is large. If v is also much
larger thang/m, then this suitable expansion is

1

]t2L 5 (
n50

` S 1

]t
LD n 1

]t
. ~13!

In the case wheng/m is comparable tov, we can write the
inverse in terms of an operatorLV containing terms of
O(g/m) only and which is given as

LV[
g

m

]

]V
V1

g

bm2

]2

]V2
5e2bmV2/4S 2

g

m
a†aDebmV2/4,

~14!

where the operatorsa and a† follow the commutation rela-
tion @a,a†#51 and are defined as

a5
1

Abm

]

]V
1

1

2
AbmV, a†52

1

Abm

]

]V
1

1

2
AbmV.

~15!

So in this case the convenient expansion of the inverse
erator is

1

]t2L 5 (
n50

` F 1

]t2LV
~L2LV!Gn 1

]t2LV

5e2bmV2/4F (
n50

` S 1

]t1
g

m
a†a

~L2LV!D n

3
1

]t1
g

m
a†aGebmV2/4. ~16!

The idea of writing this operator in terms ofa anda† is that
its action on h(V)exp(2bmV2/2), where h(V) is some
polynomial ofV, can be determined more easily since it i
volves the action of a specific function ofa†a on a series
made of eigenfunctions ofa†a.

The calculational scheme is thus reduced to the followi
Find the right eigenfunctionQ` of L with eigenvalue zero to
06111
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the desired order inj. Then use one of the truncated seri
~12!, ~13!, or ~16!, such that the truncation is consistent wi
the chosen order, keeping in mind thatj depends onv. Next
substitute this truncated inverse operator in Eq.~11! and
from it extractP̃`(X,V,t) order by order.

IV. ASYMPTOTIC DISTRIBUTION: A PERTURBATIVE
ANALYSIS

A. First-order perturbation

We now find the asymptotic distributionP`(x,v,t), to
first order in j, with the condition that it vanishes at th
boundary of (x,v) space. We will also show that the tim
average of this distributionP`(x,v,t) is the canonical equi-
librium distribution with U(x) replaced byUe f f(x)5U(x)
1U (1)(x), whereU (1)(x) will be explicitly evaluated.

To this end we need to determineQ`(X,V,t)
5(nQ`

(n)(X,V,t) to the same order from the equatio
LQ`(X,V,t)50. As before, the superscript onQ`

n indicates
the corresponding order inj. The zeroth orderQ`

(0) is the
solution to the equationL (0)Q`

(0)50, which yields the equi-
librium distribution

P̃`
(0)~X,V,t!5Q`

(0)~X,V,t!5
1

Z0
exp$2b@ 1

2 mV21U~X!#%.

~17!

The first orderP̃`
(1) is obtained from Eqs.~11! and ~16!,

P̃`
(1)5Q`

(1)1e2bmV2/4
1

]t1
g

m
a†a

ebmV2/4DL (1)P̃`
(0) ,

~18!

where Q`
(1) is the solution to the equationL (0)Q`

(1)

1L (1)Q`
(0)50. This solution is straightforward to determin

sinceL (1)Q`
(0) has the same form as the right-hand side

the identity: L (0)@h(X)Q`
(0)#52Vh8(X)Q`

(0) for any arbi-
trary functionh(X). We get

Q`
(1)~X,V,t!52bU (1)~X!P̃`

(0) ,

]

]X
U (1)~X!52j~X,t!F8~X,t!. ~19!

In Eq. ~18! we have used inverse operator~16! truncated
right after the first term which amounts to neglectin
O(j /v) terms. To this approximation, it is then sufficient

keep only the term proportional toj̇ in DL (1), which is
rewritten as follows:

DL (1)5e2bmV2/4F2Ab

m
~jU92jF81jF8!a†

1j8
]

]X

a1a†

bm
2 j̇8~a1a†!a†GebmV2/4. ~20!

Hence Eq.~18! upon neglecting terms ofO(j /v) reduces to
1-4
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P̃`
(1)~X,V,t!52bU (1)~X!P̃`

(0)2e2bmV2/4
1

]t1
g

m
a†a

3@ j̇~a1a†!a†#e2bmV2/4
1

Z
e2bU(X)

52b@U (1)~X!1K (1)~V;j!# P̃`
(0)~X,V,t!,

~21!

where

K (1)~V;j!5
1

v214
g2

m2

F 2g

bm S 2g

m
j82 j̇8D

1S v2j81
2g

m
j̇8DmV2G , ~22!

which simplifies toK (1)(V;j)'j8mV2 whenv@g/m.
We now get the asymptotic distribution from Eqs.~4!,

~17!, and~21!,

P`~x,v,t !5
1

Z
exp$2b@ 1

2 mv21U~x!1U (1)~x!

1K (1)~v;j!2jU8~x!2 j̇mv#%. ~23!

Unlike in the distributions for static potentials, here the v
locity v gets coupled to the positionx throughj. The aver-
aged large-time distribution is given as

P`~x,v,t !5
1

Z
exp$2b@ 1

2 mv21U~x!1U (1)~x!#%,

~24!

where the explicit expression forU (1)(x) is obtained upon
substitutingj from Eq. ~8! in Eq. ~19! and then integrating,

U (1)~x!5
1

4mS v21
g2

m2D F ~ f 2~x!1g2~x!!

1
2g

mvE
x

dy$g~y! f 8~y!2 f ~y!g8~y!%G . ~25!

Thus the time-averaged large-time behavior of the Brown
particles is described by the canonical distribution at a te
peratureb21 with an effective potentialUe f f5U1U (1) that
depends on the frequency and space dependence of the
ing force in addition to the properties of the particle. No
that a nontrivial contribution to the effective potential aris
to this order only iff or g are space dependent, and that it c
be tuned by varyingf, g, or v.
06111
-

n
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The additional termU (1) is the average energy associat
with the rapid motion. This can be seen easily upon sub
tuting for F in terms ofj using Eq.~7! and rewritingU (1) as
follows:

U (1)~x!52Ex

dy@j~y,t !F8~y,t !#

5
1

2
m@ j̇~x,t !#22Ex

dyS 2gj̇~y,t !
]

]y
j~y,t ! D . ~26!

ThusU (1) is sum of the average kinetic energy and the wo
done against the damping on the fast variablej.

A first-order perturbation treatment is justified, provide
L (2) and DL (2) are negligible when compared toL (1) and
DL (1), respectively. The criterion for this isuj] f /]xu
@uU-j2u. For instance, suppose that the length scales o
which U(x) and F(x,t) vary are comparable andav0 is a
typical frequency associated with anharmonic terms. Th
the above criterion reduces to (v21g2/m2)@a2v0

2, which
is consistent withj being small.

It should be remarked that the restriction of periodicity
F(x,t) to the fundamental frequencyv is not essential; one
can include the higher harmonics as well. Also by consid
ing generalizations to higher dimensions or to many intera
ing particles one does not encounter any additional com
tational difficulties in the evaluation of the distribution. Th
only additional assumption needed to write downUe f f is that
fW(xW ) andgW (xW ) are curl free.

B. Second-order perturbation

We now calculate the second-order corrections to
asymptotic distribution. Further, in this subsection, we
strict our treatment to frequencies that satisfy the condit
v@g/m, in which case the first-order termP̃`

(1) is as given
in Eq. ~21! with K (1)(V;j)5j8mV2. The second-order term
of Eq. ~11! is

P̃`
(2)5Q`

(2)1
1

]t2L @DL (1)P̃`
(0)1DL (1)P̃`

(1)1DL (2)P̃`
(0)#

5Q`
(2)1I 1

]t2L (0)
DL (1)P̃`

(0)I1
1

]t
DL (1)P̃`

(1)

1
1

]t
DL (2)P̃`

(0)1OS 1

v
j2D . ~27!

Though the second term in the above expression is ofO(j),
it has been included here because when calculated earlie
first order inj, the terms ofO(j/v) were neglected. This
term is written withinpipes to indicate that only terms o
O(j/v) and O(j/v2) have to be retained and not th
O(j/v0) term that has already been included inP̃`

(1) .
We now evaluate the terms on the right-hand side of

~27!. The first termQ`
(2) is the solution to the equation

L (0)Q`
(2)1L (1)Q`

(1)1L (2)Q`
(0)50. This, as in the case o

Q`
(1) , is straightforward to determine and we get
1-5
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Q`
(2)~X,V,t!52bU1~X!P̃`

(0)1
b2

2
~U (1)~X!!2P̃`

(0) ,

]

]X
U1~X!52~j8!2U8~X!1

1

2
~j!2U-~X!. ~28!

The second term is

I 1

]t2L (0)
DL (1)P̃`

(0)I
5I S 1

]t
1

1

]t
2
L (0)1

1

]t
3 ~L (0)!21••• D DL (1)P̃`

(0)I
52bK~X,V;j!P̃`

(0), ~29!

where

K~X,V;j!P̃`
(0)52

]t

v2
H~X,V;j!2

1

v2
L (0)H~X,V;j!,

H~X,V;j!5~jU91j8U82 1
4 jF81 1

4 jF8!VP̃`
(0)

1L (0)~mV2j8P̃`
(0)!. ~30!

The third and the fourth terms are

1

]t
DL (1)P̃`

(1)52bmV2@~j8!22~j8!2# P̃`
(0)1b2@U (1)mV2j8

1 1
2 ~mV2j8!2# P̃`

(0) ,

1

]t
DL (2)P̃`

(0)5
1

2
bmV2@~j8!22~j8!2# P̃`

(0)2b@U2~X!

1C~X,V!# P̃`
(0) , ~31!

where (U2)85jj8U923j8j8U8 andC(X,V) is an arbitrary
t-independent function. These arbitrary andt-independent
terms are included since the action of]t

21 allows this ambi-
guity. This ambiguity is removed from the condition o
tained by substitutingP̃` in Eq. ~9! and averaging over a
period. ThusP̃`

(2) should satisfy

L (0)P̃`
(2)1DL (1)P̃`

(1)50, ~32!

which implies, after some calculation, thatC is the solution
of the equation

L (0)@CP̃`
(0)#14mj8j9V3P̃`

(0)50. ~33!

In the high-viscous limit,g/m@v0 , this functionC(X,V)
'(4m/3g)j8j9(mV316V/b). Using Equations~27!-~31!
and Eq.~21! we get the asymptotic distribution to secon
order
06111
P`~x,v,t !5
1

Z
exp$2b@ 1

2 mV21U~X!1U (1)~X!1U (2)~X!

1R~X,V,t !#%, ~34!

where R(X,V,t)5K (1)(V;j)1K(X,V;j)
1 1

2 mV2$@j8(X,t)#22(j8(X,t))2%1C(X,V); U (2)(X)
5U1(X)1U2(X); and, to second order,X5x2j(x,t)

2j(x,t)j8(x,t) and V5v2 j̇(x,t)2j(x,t) j̇8(x,t). It is
clear from the above equation thatP`(x,v,t) will contain
terms with bothv and x dependence in addition to purel
x-dependent andv-dependent terms.

The explicit form ofU (2)(X)5U (2)(x) which contributes
at second order to the effective static potential is

U (2)~x!5
1

4m2v2S v21
g2

m2D F @ f ~x!21g~x!2#U9~x!

28Ex

dy$@ f 8~y!#21@g8~y!#2%U8~y!G . ~35!

We notice here that a nontrivial contribution arises even
x-independent driving, providedU(x) is anharmonic. Also
note that this second-order correction to the effective pot
tial depends onU(x) while this is not the case at the firs
order.

We recover the results of Devoretet al. @4# and Jung@5#
when f (x) andg(x) are independent of the position coord
natex. In the former reference the inertial term was cons
ered while in the latter it was not, but their analysis of t
high-frequency limit is tantamount to assuming that the dr
ing frequency is larger than all typical frequencies of t
system including that of noise. This assumption restricts
validity of the answer, and clearly does not hold for wh
noise. In fact, this assumption would lead to the absenc
the term*x@( f 8)21(g8)2#U8 in the effective potential for
x-dependent driving. That the error, when this assumptio
made, shows up atO(j2) is also evident from the presenc
of the termVj82]/]X in L (2) operator.

We reiterate that there is a nontrivial contribution to t
effective potential from the position-dependent drivin
forces. First, it shows up at first order itself and, second
shows up at second order even for harmonic potentials; b
of which are absent for position-independent driving forc

V. SLOWLY OSCILLATING FORCES

In this section, we will consider the opposite extrem
namely,v small compared to bothg/m andv0 . The aim is
to compare with the asymptotic behavior we found in t
previous section under rapid driving. Under slow driving, t
Brownian particle sees an unchanging potential within
relaxation time and so the Boltzmann-like distribution cor
sponding to the instantaneous potential is a good zer
order starting point for perturbation.

The large-time distributionP`(x,v,t) will acquire the
same periodicity as that of the driving force. Hence the le
1-6
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hand side of Eq.~2! is of O(v) while the right-hand side ha
two terms, one ofO(g/m) and the other ofO(v0). Thus
P`(x,v,t) can be evaluated perturbatively in (mv/g) and
(v/v0). To the leading~zeroth! order, this distribution is

P`
(0)~x,v,t !5

1

Z~ t !
exp$2b@ 1

2 mv21U~x!1U f~x!cos~vt !

1Ug~x!sin~vt !#%, ~36!

where U f(x)52*xdy f(y) and Ug(x)52*xdyg(y); Z(t)
is the instantaneous normalization constant determined
the normalization condition:*dxP`(x,v,t)51 at any timet,
and evidently satisfies the periodicity conditionZ(t1T)
5Z(t).

We now estimate the averaged large-time distribut
P`(x,v,t) at low and high temperatures separately. To de
mine the average distribution at high temperature, it is c
venient to rewrite this equation as follows.

P`~x,v,t !5
1

Z~ t !
e2b[mv2/21U(x)]I0„bV~x!…

3F11 (
nÞ0

einvt
In„bV~x!…

I0„bV~x!…G , ~37!

where In(a) is the modified Bessel function andV(x)
5A@U f(x)#21@Ug(x)#2. The ratio In(a)/I0(a) lies be-
tween 0 and 1 for 0<a,`, and decreases very rapidly fo
small a; In(a)/I0(a);an/2nn!. Thus it suffices to keep a
few terms, and to leading order we obtainP`(x,v,t)

5(1/Z)exp$2b@ 1
2mv21Ueff(x)#%, where

Ue f f~x!5U~x!2
1

b
ln$I0„bA@U f~x!#21@Ug~x!#2

…%.

~38!

Thus the Brownian particles, when observed over a time
O(T), get described by the canonical distribution at a te
peratureb21 with an effective potential that depends on t
temperature.

At low temperature the saddle-point approximation can
used to evaluateP`(x,v,t). To the leading order, this wil
be P`(x,v,t)5Peq(v)@1/N(t)#( i 51

N(t)d„x2xmin
( i ) (t)…, where

$xmin
( i ) (t)% are the minima at timet of the function U(x)

1U f(x)cos(vt)1Ug(x)sin(vt) and N(t) is the number of
minima at that time.

It might appear thatU f(x) andUg(x), obtained by inte-
grating f (x) andg(x), respectively, have different constan
of integration in regions where the driving forces are pres
from those where they are absent. However, they get fixed
the condition thatP(x,v,t) and ]P(x,v,t)/]x are single-
valued functions ofx.

VI. DISCUSSION

In this section, we review the results of this paper fo
general position-dependent periodic driving force with a
cus on the high-frequency regime. We then discuss effec
06111
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potentials for specific forms of the driving functions, and u
these results to point out some possible applications.
nature of these effective potentials can be drastically diff
ent from that of the original potentials, and we illustrate th
fact using the example of a simple pendulum.

The principal results of this paper concern the form of t
asymptotic distribution of a Brownian particle subjected to
driving force, which is periodic in time but is an arbitrar
function of position. In the limit of high-frequency driving
the particle makes small, rapid excursions around a smo
path along which the motion is relatively slow. This afford
the possibility of a systematic perturbative treatment in po
ers of the excursion amplitude. The result for the distribut
averaged over a cycle is described in terms of an effec
potential whose form we derived. Interestingly, the lead
contributionU (1), which is second order in the amplitude o
the applied driving force, is present only if the driving forc
is position dependent. ThisU (1) can be interpreted as th
average energy of the excursion variable. In the next-or
contribution to the effective potential as well, this positio
dependence of the driving force has an interesting ef
even for purely harmonic confining potentials.

Central to our discussion of rapid periodic driving is th
separation into slow and fast variables. It should be no
that this demarcation of slow and fast is based on whethe
not the variable varies considerably over a time period. T
is different from the distinction made in discussions of fa
and slow variables that are so categorized according
whether they relax in small or large times. In this latter ca
many methods have been developed to eliminate the
variables and obtain an effective dynamics for the relaxat
of the slow variables@8,10#.

The effective potential that we find can be qualitative
different in the low- and high-frequency regimes. Whenv is
small, the leading additional potential felt by the particle
DU(x)[Ue f f(x)2U(x), is always nonpositive for any
choice of f (x) and g(x). On the other hand for largev,
DU(x) can be either positive or negative in general, thou
if one of f (x) or g(x) is identically zero then it is always
non-negative. Also to the leading order whenv is small,
DU(x) depends on temperature but not onv, whereas in
largev limit it only depends onv and not on temperature

Certain choices of the driving force can lead to interest
outcomes. Suppose we chooseU(x) to be a confining poten-
tial which is a monotonically increasing function ofuxu while
f (x) is a monotonically decreasing function ofuxu which
vanishes atuxu5L, and g(x) vanishes identically: for ex-
ample, U(x)5 1

2 mv0
2x2 and f (x)5 f 0sin(px/L) for 2L<x

<L and zero otherwise. Whenv is small the effective po-
tential continues to have a single minimum at the origin. B
when v is large, it develops two additional minima; on
close toL, between 0 andL and the other close to2L,
between2L and 0. Thus, a system of Brownian particl
would cluster in a region near the origin for low drivin
frequency, while at high frequency these particles would s
regate into two clusters which are separated by a distanc
O(L).

The parameters specifying the particles also enter the
fective potential. Hence the minima of the effective potent
1-7
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as seen by different species of particles are different. One
make use of this fact, for instance, to separate different s
cies of Brownian particles in a situation where they are i
tially mixed, by driving them with a space-dependent pe
odic force.

To get an idea of the magnitude of the qualitative chan
the effective potential introduces, it is instructive to exam
an example. Consider a rigid pendulum: a massless ro
length l with a bob of massm attached to it at the end an
oscillating in a gravitational fieldg. The potential has ex
trema atu50 andu5p which are, respectively, stable an
unstable points, whereu is the angle the rod makes with th
negativey axis~along the direction of gravity!. Now oscillate
the point of suspension along they axis with a frequencyv
and amplitudea. The angleu then evolves according to th
equation l ü1gsinu5av2sinu cos(vt). The effective poten-
tial Ve f f(u) has extrema atu50,p and u6 , whereu65p
6cos21(l) with l52gl/a2v2. The stability of these points
is as follows:u50 is stable;u5u6 exist only if l,1 and
when they exist they are unstable;u5p is stable whenu6

exist and is unstable otherwise. In a nutshell, whenl>1 the
pendulum shows no qualitative change in its behavior u
oscillating the point of suspension whereas whenl,1 then
u5p also becomes a stable point and hence the pendu
can make small oscillations about this point too. This d
matic change in the behavior of the pendulum was exp
mentally demonstrated by Kapitza@1#.
,

e

J.

. A
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Interestingly, if we oscillate the point of suspension alo
the x axis instead of they axis, the pendulum will exhibit a
different behavior. In this case, the effective potential h
extrema atu50, p, and 6cos21l if l,1; the points
6cos21l are stable when they exist;u50 is unstable ifl
,1 and stable otherwise;u5p is always unstable. In othe
words, the pendulum now oscillates about points that do
lie on they axis. The nature of the extrema of the effecti
potential does not change in the presence of the viscous
and noise except that the value ofl will now be different
@with v2 replaced byv4/(v21(g/m)2)].

To conclude, we have developed a perturbative calcu
tional scheme to study the asymptotic behavior of Brown
particles under the influence of rapidly oscillating force
When these forces are position dependent, nontrivial effe
are seen in the large-time behavior. The formalism develo
here can be generalized straighforwardly to interact
Brownian particles in any dimensions. It can also be e
tended to study the behavior of fluctuating fields when s
jected to periodic driving.
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